
International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-3, Issue-9, Sep- 2017]

https://dx.doi.org/10.24001/ijaems.3.9.9 ISSN: 2454-1311

www.ijaems.com Page | 951

Analyzing the Influence of Various Fuzzification

Methods in the Evaluation of Netbeans Java

Components’ Interface Complexity for

Reusability
Ajayi Olusola Olajide, Elemese Tolulope Olawale, Aderele Tolulope Busayo

Department of Computer Science, Faculty of Science, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria

Abstract— The prognostic nature of fuzzy has made it a

versatile tool in handling uncertainty problem. One of the

major components of fuzzy system that plays an important

role in its successful interpretability is fuzzification. While

many researches have utilized its different forms in the

accomplishment of their evaluations, especially in the

domain of component based software development; it

remains to be seen, the application and effects of these

different membership functions in the assessment of

components a singular solution. The research work

examined the interface complexity of two NetBeans Java

Components in determining their reusability. The result of

the experimentation carried using MATLAB as tool, shows

that Trapezoidal returned the highest reusability value,

indicating that the components are reusable, and

Polynomial fuzzification method returning the lowest

reusability value and giving a false alarm that the used

components were not reusable. The results underline the

indispensable role of fuzzification method in the evaluation

of component reusability.

Keywords— fuzzification, reusability, interface

complexity, Java, NetBeans, components, inference

engine, membership function.

I. INTRODUCTION

Software reusability is software quality attribute in which

software or its module is reused with little or no

modification. Software reuse is the development of existing

software system using their existing features or component.

Since software demand has increase rapidly over the years,

with software developer being unable to meet the demand.

According to Sommerville (2011), this is due to the

increasingly demand for large and more complex system

that need to be delivered more quickly. Therefore, the goal

of software reusability is to provide higher quality products,

less development time, higher scheduling accuracy and

Reliability (Kumar et al, 2014).To help the designer and

developer to achieve this goals, researchers have proposed a

large number methods in the evaluation of component

reusability. With vast amount of metrics available it

becomes important to understand them in order to acquire a

precise and precise understanding of the software being

evaluated.

Software Development process contains various phases

during the development of software entity. In component

based systems development (CBSD), the reusability of a

component is an important aspect, which gives the

assessment to reuse the existing developed component. If an

existing component is used after proper assessment, it

reduced the risk, time and cost of the project development

process. To be able to reuse the components, it is necessary

to predict or asses the component reusability with better

accuracy. After assessment of component, if component

reusability does not comes out to meet the expected

requirement then it may not be good to reuse the reuse the

component as it can lead to overwork and may increase the

risk, integration time and cost (Sharma et al, 2013). Due to

these requirements in software development process,

researchers have been trying to find the component

reusability using statistical and other conventional

techniques. Recently many techniques such as fuzzy logic,

Neuro-fuzzy have taken lead due to their power of

predictability.

In this paper, various fuzzification methods (fuzzy logic)

will be applied in the evaluation of java components

reusability with the intent of comparing the effects of the

output values returns.

II. BACKGROUND

Fuzzy Logic is the main constitute of the soft computing

approaches. Fuzzy logic can be used in conjunction with

neural networks, genetic algorithms, probabilistic reasoning

https://dx.doi.org/10.24001/ijaems.3.9.9
http://www.ijaems.com/

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-3, Issue-9, Sep- 2017]

https://dx.doi.org/10.24001/ijaems.3.9.9 ISSN: 2454-1311

www.ijaems.com Page | 952

Output Input

Fuzzifier Inference Defuzzifier

Rule

etc. Fuzzy Logic is a mathematical tool for dealing with

uncertainty and also it provides a techniques to deal with

imprecision and information granularity (Sivanandam, et al,

2007). Fuzzy logic offers a particularly convenient way to

generate a mapping between input and output spaces by

using natural expressions (Zadeh, 2002). In direct contrast

to neural networks, which take training data and generate

opaque models, fuzzy logic is based on if-then rules, which

are designed by considering the opinion of experts from that

domain. It has been found that the most accurate prediction

models are based on analogy and experts opinion. Expert-

based estimation was also found to be better than all

regression-based models (Musilek et al, 2000). Henceforth

the use of fuzzy logic in reusability prediction is

desirable since expert knowledge can be incorporated into

the fuzzy reusability prediction models.

The major advantage of fuzzy approach is that it is less

dependent on historical data. Fuzzy logic models can be

constructed without any data or with little data. This makes

fuzzy logic superior over data-driven model building

approaches such as neural network. Also fuzzy-logic can

adapt to new environment when data become available. The

most important thing to realize about fuzzy logical

reasoning is the fact that it is a superset of standard Boolean

logic. Figure 1 shows the general architecture of fuzzy

inference system.

Fig.1: Fuzzy Inference System Architecture

III. RELATED WORKS

In the work of Touil et al (2013),the work focus on the

performance and studies of single machine infinite bus

using fuzzy power system stabilizer (FPSS), So also in

Singh (2015), the paper explores the various metric that

affects the reusability of aspect oriented software and

estimates it using fuzzy logic approach, the work proved

that application of fuzzy logic approach has shown their

applicability other than traditional statistical techniques. A

furtherance of the work Pooja et al (2015) proposed a model

developed using fuzzy logic, the model is effectively used

for predicting the degree of reusability of a class in the early

phase of SDLC which will result in minimizing the time

and effort of the software developers. In Omar et al (2015)

the work shows comparison between the effects of different

type of membership function on fuzzy logic controller and

presents the performance comparison of fuzzy logic

controller with three different types of membership

functions.

IV. RESEARCH PROBLEM

Fuzzy by nature and purpose has different and wide

applicability. The breakdown of the architecture shows the

fuzzifier having different types. Researches deploying

different fuzzifiers have shown a particular effect as it

relates to the fuzzifier applied (Galetakis et al, 2005;

Hajighorbani et al, 2014). This study therefore seeks to

demonstrate and analyze the effects of the various

fuzzification methods in one singular experimentation.

RESEARCH AIM

The study aims to analyze the influence of the various

fuzzification methods on the evaluation of NetBeans Java

components’ interface complexity for determining

reusability.

V. RESEARCH METHODOLOGY

The following procedures were taken in the gathering of

data, analyzing and implementation in order to actualize the

study’s goal.

1. Java components were extracted from NetBeans. The

features extracted include component’s number of

methods, number of properties. A total of two (2)

https://dx.doi.org/10.24001/ijaems.3.9.9
http://www.ijaems.com/

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-3, Issue-9, Sep- 2017]

https://dx.doi.org/10.24001/ijaems.3.9.9 ISSN: 2454-1311

www.ijaems.com Page | 953

components, namely AdvancedMedia and

HtmlEditorApp were accessed for the experimentation

of this work.

2. Suitable Interface Complexity metrics were adopted

and applied for the assessment of the components’

reusability.

3. Fuzzy Logic. The evaluation was done with the

different fuzzification methods identified in this

study.Mamdani FIS type was used for this study.

Figure 2 shows the research methodology

Fig.2: Research Methodology

RESEARCH DESIGN

Architectural design is a representation that enables a software engineer to analyze the effectiveness of the design in meeting its

stated requirements (Pressman, 2001). Figure 3 presents the architectural design of the system.

Fig.3: Architectural Design

Fuzzification

https://dx.doi.org/10.24001/ijaems.3.9.9
http://www.ijaems.com/

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-3, Issue-9, Sep- 2017]

https://dx.doi.org/10.24001/ijaems.3.9.9 ISSN: 2454-1311

www.ijaems.com Page | 954

According to Naaz et al (2011), Fuzzification involves mapping the values of the numerical inputs by a function according to a

degree of compatibility of the respective fuzzy sets. It could be described as the conversion of a precise quantity to a fuzzy

quantity.

Membership Function

A Membership Function (MF) is a curve that defines how each point in the input space is mapped to a membership value (or

degree of membership) between 0 and 1.In fuzzy logic, fuzzy set membership occurs by degree over the range [0,1], which is

represented by a membership function. There are different types of membership functions, namely:

i. Triangular: This is specified by three (3) parameters; it is curve and linear (a straight line). It has the function

name trimf.

Equation 1 presents the mathematical model for triangular membership type.

 𝑓(𝑥; 𝑎, 𝑏, 𝑐) = max (min (
𝑥−𝑎

𝑏−𝑎
,
𝑐−𝑥

𝑐−𝑏
) , 0) …(1) (Zhao et al, 2002)

where:

a, b, c represent values of membership functions low, medium and high respectively.

the output (f) ranges between 0 and 1.

ii. Trapezoidal: This is specified by four (4) parameters; it is curve and linear (also, straight line, but truncated

triangular curve). It has the function name trapmf.

Equation 2 present the mathematical model for trapezoidal membership type.

 𝑓(𝑥; 𝑎, 𝑏, 𝑐) = max (min (
𝑥−𝑎

𝑏−𝑎
,
𝑑−𝑥

𝑑−𝑐
) , 0) … (2) (Zhao et al, 2002)

The parameters a and d locate the "feet" of the trapezoid and the parameters b and c locate the "shoulders."

iii. Bell curves: This is specified by three (3) parameters; it is smooth and non-linear. It has the function name

gbellmf.

Equation 3 present the mathematical model for Bell Curve membership type.

 𝑓(𝑥; 𝑎, 𝑏, 𝑐) =
 1

1+|
𝑥−𝑐

𝑎
|
2𝑏 …(3) (Zhao et al, 2002)

The parameter b is usually positive. The parameter c locates the center of the curve. Enter the parameter

vector params, the second argument for gbellmf, as the vector whose entries are a, b, and c, respectively.

iv. Gaussian: This is specified by two (2) parameters; it is smooth and non-linear. It has two (2) functions: gaussmf

and gauss2mf.

Equation 4 present the mathematical model for Gaussian membership type.

 𝑓(𝑥; 𝜎, 𝑐) = 𝑒
−(𝑥−𝑐)

2𝜎2

2

 …(4) (Zhao et al, 2002)

The parameters for gaussmf represent the parameters σ and c listed in order in the vector [sig c].

v. Sigmoidal: This is specified by two (2) parameters; it is suitable for use in neural network for simulating the

behaviour of fuzzy. It has three (3) functions type: the basic sigmoidal function (sigmf), the difference in two

sigmoidal functions (dsigmf) and the product of two sigmoidal functions (psigmf).

Equation 5 present the mathematical model for Sigmoidal membership type

 𝑓(𝑥, 𝑎, 𝑐) =
1

1+𝑒−𝑎(𝑥−𝑐)
 …(5) (Zhao et al, 2002)

Depending on the sign of the parameter a, the sigmoidal membership function is inherently open to the right or

to the left, and thus is appropriate for representing concepts such as "very large" or "very negative." More

conventional-looking membership functions can be built by taking either the product or difference of two

different sigmoidal membership functions.

vi. Polynomial based: Several membership functions are found under this group. Three (3) commonly related

functions are: Z curve (zmf), S curve (smf) and Pi curve (pimf).

https://dx.doi.org/10.24001/ijaems.3.9.9
http://www.ijaems.com/

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-3, Issue-9, Sep- 2017]

https://dx.doi.org/10.24001/ijaems.3.9.9 ISSN: 2454-1311

www.ijaems.com Page | 955

Equations 6 to 8 present the mathematical model for Polynomial Base membership type.

pimf

𝑓(𝑥; 𝑎, 𝑏, 𝑐, 𝑑) =

{

0, 𝑥 ≤ 𝑎

2 (
𝑥−𝑎

𝑏−𝑎
)
2

, 𝑎 ≤ 𝑥 ≤
𝑎+𝑏

2

1 − 2 (
𝑥−𝑎

𝑏−𝑎
)
2

,
𝑎+𝑏

2
 ≤ 𝑥 ≤ 𝑏

1, 𝑏 ≤ 𝑥 ≤ 𝑐

1 − 2 (
𝑥−𝑐

𝑑−𝑐
)
2

, 𝑐 ≤ 𝑥 ≤
𝑐+𝑑

2

2 (
𝑥−𝑑

𝑑−𝑐
)
2

,
𝑐+𝑑

2
≤ 𝑥 ≤ 𝑑

0, 𝑥 ≤ 𝑑 }

 …(6) (Zhao et al, 2002)

Zmf

𝑓(𝑥; 𝑎, 𝑏) =

{

1, 𝑥 ≤ 𝑎

1 − 2 (
𝑥 − 𝑎

𝑏 − 𝑎
)
2

, 𝑎 ≤ 𝑥 ≤
𝑎 + 𝑏

2

2 (
𝑥 − 𝑏

𝑏 − 𝑎
)
2

,
𝑎 + 𝑏

2
≤ 𝑥 ≤ 𝑏

0, 𝑥 ≥ 𝑏

 …(7) (Zhao et al, 2002)

Smf

𝑓(𝑥; 𝑎, 𝑏) =

{

0, 𝑥 ≤ 𝑎

2 (
𝑥 − 𝑎

𝑏 − 𝑎
)
2

, 𝑎 ≤ 𝑥 ≤
𝑎 + 𝑏

2

1 − 2 (
𝑥 − 𝑏

𝑏 − 𝑎
)
2

,
𝑎 + 𝑏

2
≤ 𝑥 ≤ 𝑏

1, 𝑥 ≥ 𝑏 }

 …(8) (Zhao et al, 2002)

Components Data

With established facts that components could be purchased and extracted from third party rather than built (Sharma et al, 2006;

Sharma et al, 2009; Bharwaj, 2010; Kumar et al, 2013), we extracted two (2) components from NetBeans. Table 1 shows the

sources, nature and numbers of the components extracted.

Table.1: Components Used

S/N Component Source Nature of Components Number of

Components

Date Extracted

1. NetBeans Java Components 2 01/09/2016

Interface Complexity

Interfaces are the access points of a component, through which a component can request a service declared in an interface of the

service providing component (Kaur and Singh, 2013). That is, interface acts as the means through which application and

components interact. Sagar et al (2010) submitted that, interface plays a lead role while measuring the overall complexity of the

component. Sharma et al (2008) said complex interfaces will lead to high efforts for understanding and customizing of

components; therefore for better reusability, interface complexity should be as low as possible.

For this study, Bounded Interface Complexity Metric (BICM) has been adopted from Tobias et al (2015) for the measurement of

black-box complexity based on the specification/signature of the component under study.

https://dx.doi.org/10.24001/ijaems.3.9.9
http://www.ijaems.com/
http://www.elegantjbeans.com/

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-3, Issue-9, Sep- 2017]

https://dx.doi.org/10.24001/ijaems.3.9.9 ISSN: 2454-1311

www.ijaems.com Page | 956

Interface Complexity (IC) =

 (𝐴∑ (𝐶𝐼𝑀𝑖)/𝑀))
𝑚

𝑖=1
+ (B∑ (𝐶𝐼𝑃𝑗)/𝑁))

𝑛

𝑗=1
 …(9)

(Tobias et al, 2015)

where:

 CIMi is the complexity of the ith interface method

CIPj is the complexity of the jth property.

M and N represents the number of component methods and properties respectively, while A, B are the weight values.

In this study, the customization constants, A and B are equated to 1; thereby modifying the equation to be:

IC = (∑ (𝐶𝐼𝑀𝑖)/𝑀))
𝑚

𝑖=1
+ (∑ (𝐶𝐼𝑃𝑗)/𝑁))

𝑛

𝑗=1
 …(10)

In determining the interface complexity of components, different weight values are assigned to methods, based on the data type

of arguments or return values (e.g. integer, string, date, array list, vector etc.) used in the method. Adopting Kumar et al (2014)

the data collected were classified into five (5), namely: very simple, simple, medium, complex, and highly complex. Table 2

represents the weight values of the interface methods.

Table 2: Weight Values of Interface Methods (Kumar et al, 2014)

No of Method / No

of Data Types

Very simple (e.g.

integer, double,

Boolean, float)

Simple (e.g.

structured data

type)

Medium (e.g.

class type, object

type)

Complex (e.g.

pointers, built-in

data types)

Highly Complex

(e.g. user-

defined data

types)

1-3 0.05 0.10 0.15 0.20 0.25

4-6 0.10 0.20 0.30 0.40 0.50

7-9 0.15 0.30 0.45 0.60 0.75

>=10 0.20 0.40 0.60 0.80 1.00

To generate the complexity table for our proposed system, the weight value in Table 2 and the feature extracted values

in Table 1 were used. The equations below show how Table 3 was generated.

Let

M = No of Method

 P = No of Property

w = weight value

m = No of method’s data type

p = No of property’s data type

n = number of components

So,

 CIM = ∑ (𝑚 ∗ 𝑤)/𝑀𝑛
𝑖=1 …(11)

S/N Component

Name

No of

methods

(M)

Weight

values

CIM = ∑

No method

data type *

their

weight

values

A =

CIM/M

No of

property

(P)

Weight

values

CIP = ∑ No

property

data type *

their weight

values

B =

CIP/P

IC

=

A+

B

1. AdvancedMedi

a

13 0.10,

0.45

0.32 0.02 3 0.15 0.15 0.05 0.0

7

2. HTMLEditorA

pp

14 0.10,

0.45

0.33 0.02 1 0.15 0.15 0.15 0.1

7

https://dx.doi.org/10.24001/ijaems.3.9.9
http://www.ijaems.com/

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-3, Issue-9, Sep- 2017]

https://dx.doi.org/10.24001/ijaems.3.9.9 ISSN: 2454-1311

www.ijaems.com Page | 957

 CIP = ∑ (𝑝 ∗ 𝑤)/𝑃𝑛
𝑖=1 …(12)

Table.3: Complexity Table

VI. IMPLEMENTATION

MATLAB software was used as tool for the implementation

of this work. The Input Variable named IC (Interface

Complexity) has three input linguistic variables Low

(0,0.25,0.50), Medium (0.25,0.50,0.75) and High

(0.50,0.75,1.0) while the output variable, Reusability has

also three variables as its output linguistic, namely Low

(0,0.25,0.50), Medium (0.25,0.50,0.75) and High

(0.50,0.75,1.0). With one (1) input variable for the

experimentation and three (3) linguistic values, we have 31

rules (3 rules) generated. These were formulated as:

If (IC is Low) then (Reusability is High) (1)

If (IC is Medium) then (Reusability is Medium)

(1)

If (IC is High) then (Reusability is Low) (1)

For cost effectiveness, Mamdani FIS type was used for this

work, with different fuzzification methods deployed for

each experimental setup. Table 4 shows the FIS structure

for the study.

Table.4: FIS Structure

[System]

Name='IC'

Type='mamdani'

Version=2.0

NumInputs=1

NumOutputs=1

NumRules=3

AndMethod='min'

OrMethod='max'

ImpMethod='min'

AggMethod='max'

DefuzzMethod='centroid'

Figures 4 to 7 further show the FIS specifications for the

some of the used fuzzification methods (Input and Output).

Fig.4: Triangular Membership Specification (Input)

Fig.5: Triangular Membership Specification (Output)

Fig.6: Triangular Membership Specification (Input)

https://dx.doi.org/10.24001/ijaems.3.9.9
http://www.ijaems.com/

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-3, Issue-9, Sep- 2017]

https://dx.doi.org/10.24001/ijaems.3.9.9 ISSN: 2454-1311

www.ijaems.com Page | 958

Fig.7: Triangular Membership Specification (Output)

The reusability outputs of some of the different

fuzzification methods are presented in Figures 8 to 19,

while Table 5 shows the entire results according to the

fuzzification methods applied.

Fig.8: IC Reusability Results (Triangular– Component1)

Fig.9: IC Reusability Chart (Triangular– Component1)

Fig.10: IC Reusability Results (Triangular– Component2)

Fig.11: IC Reusability Chart (Triangular– Component2)

Fig.12: IC Reusability Results (Trapezoidal– Component1)

https://dx.doi.org/10.24001/ijaems.3.9.9
http://www.ijaems.com/

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-3, Issue-9, Sep- 2017]

https://dx.doi.org/10.24001/ijaems.3.9.9 ISSN: 2454-1311

www.ijaems.com Page | 959

Fig.13: IC Reusability Chart (Trapezoidal– Component1)

Fig.14: IC Reusability Results (Trapezoidal– Component2)

Fig.15: IC Reusability Chart (Trapezoidal– Component2)

Fig.16: IC Reusability Results (Gaussian– Component1)

Fig.17: IC Reusability Chart (Gaussian– Component1)

Fig.18: IC Reusability Results (Gaussian– Component2)

https://dx.doi.org/10.24001/ijaems.3.9.9
http://www.ijaems.com/

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-3, Issue-9, Sep- 2017]

https://dx.doi.org/10.24001/ijaems.3.9.9 ISSN: 2454-1311

www.ijaems.com Page | 960

Fig.19: IC Reusability Chart (Gaussian– Component2)

Table.5: Fuzzification Methods and their Interface Complexity Reusability Outputs

Fuzzification

Method

Component

Type

Input

Value

Reusability

Triangular Component I 0.07 0.750

Component II 0.17 0.750

Trapezoidal Component I 0.07 0.812

Component II 0.17 0.812

Bell Curves Component I 0.07 0.736

Component II 0.17 0.744

Gaussian Component I 0.07 0.744

Component II 0.17 0.743

Sigmoidal Component I 0.07 0.758

Component II 0.17 0.788

Polynomial Zmf Component I 0.07 0.436

Component II 0.17 0.436

Polynomial Smf Component I 0.07 0.780

Component II 0.17 0.808

Polynomial Pimf Component I 0.07 0.750

Component II 0.17 0.750

VII. DISCUSSION

Table 5 shows the influences of the different fuzzification

approach in the prediction of component reusability based

on their interface complexity. As can be deduced from the

table, Trapezoidal fuzzification method produced the

highest reusability prediction, while Polynomial

membership type shows the least reusability value. This

implies that while other fuzzification methods resulted into

considerably high reusability values, indicating that the

components are reusable; the results of Polynomial Zmf

suggests components not reusable as it yielded low

reusability values.

VIII. CONCLUSION

Certain quality factors such as customizability, interface

complexity, portability, understandability etc. determine the

reusability of software components. These quality factors

are computed using appropriate and related metrics. In this

work, we have illustrated with only Interface Complexity.

To further stress on the necessary caution to be deployed in

the assessment of component reusability, this study has

argued for the role of fuzzification methods in ascertaining

component reusability. The results presented in the section

above proved that indeed, fuzzification method used has

effects on the predictability of component reusability.

Highest Reusability

Prediction Value

Lowest Reusability

Prediction Value

https://dx.doi.org/10.24001/ijaems.3.9.9
http://www.ijaems.com/

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-3, Issue-9, Sep- 2017]

https://dx.doi.org/10.24001/ijaems.3.9.9 ISSN: 2454-1311

www.ijaems.com Page | 961

FUTURE RESEARCH DIRECTION

Having established the fact that, aside interface complexity,

which serves as access gateway to application usage, other

quality factors like customizability, portability,

understandability do determine reusability of components,

this work shall be extended further to analyze the effects of

different fuzzification methods utilizing these identified

factors in one experimental scenario. We shall also

endeavor to use more number of components.

REFERENCES

[1] Galetakis, M., Vasiliou, A., Roumpos, P. F. (2005).

Developing Fuzzy Inference System (FIS) for the

evaluation of multiple layer Liguite deposits,

International Workshop in “Geoenvironment and

Geotechnics”, Milos Island, Greece.

[2] Hajighorbami,S., Radzi, M.A.M., Abkadir, M.Z.A.,

Shatie, S., Ichanaku, R., and Maghami, M.R. (2014).

Evaluation of FuzzyLogic Subsets Effects on

Maximum Power Point Tracking for PhotoVoltaic

System. International Journal of Photoenergy.

http://dx.doi.org/10.1155/2014/719126

[3] Kumar, A., Chaudhary, D., and Kumar, A. (2014).

Empirical Evaluation of Software Component Metrics.

International Journal of Scientific & Engineering

Research. Vol. 5, Issue 5: 814- 820

[4] Kumar, V., Sharma A.and Kumar. R. (2013).

Applying Soft Computing Approaches to Predict

Defect Density in Software Product Releases: An

Empirical Study, COMPUTING AND

INFORMATICS, volume 32, No.1, pp: 203-224.

[5] Musilek, P., Pedrycz, W., Succi, G., and Reformat, M.

(2000). Software Cost Estimation with Fuzzy Models,

ACM SIGAPP Applied Computing Review, Vol. 8,

pp.24-29.

[6] Naaz, S., Alam A., and Biswas, R. (2011). Effect of

Different Deffuzification Methods In A Fuzzy Based

Load Balancing Application IJCSI International

Journal of Computer science Issues, Vol. 8, Issue 5,

No 1, ISSN (online): 1694-0814

[7] OmarAdil,M.A., Aous Y. A., Balasem S. S.(2015).

Comparison between the Effects of Different Types of

Membership Functions on Fuzzy Logic Controller

Performance.International Journal of Emerging

Engineering Research and Technology Volume 3,

Issue 3, March 2015, PP 76-83 ISSN 2349-4395

(Print) & ISSN 2349-4409 (Online)

[8] Pooja, D., Parwinder, K. D., Jagmohan, M. (2015).

Estimating Software Reusability from OO Metrics

using Fuzzy Logic. Apeejay Journal of Computer

Science and Applications. ISSN: 0974-5742(P), Vol.

3, January 2015

[9] Pradeep, K. S., Om, P. S.,Amar, P. S., and Amrendra,

P.(2015). A Framework for Assessing the Software

Reusability using Fuzzy Logic Approach for Aspect

Oriented Software. Information Technology and

Computer Science, 2015, 02, 12-20 Published Online

January 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2015.02.02

[10] Roger, S. P.(2001). Software Engineering, A

Practitioner approach. McGraw Hill, NY.

[11] Sagar, S., Nerurkar N. W., Sharma A. (2010). A soft

computing based approach to estimate reusability of

software components, ACM SIGSOFT Software

Engineering Notes, Volume 35 Issue 5, September

pp:1-5.

[12] Sharma, A., Kumar, V., and Kumar, R. (2013).

Applying Soft Computing Approaches to Predict

Defect Density in Software Product Releases: An

Empirical Study, COMPUTING AND

INFORMATICS, volume 32, No.1, pg: 203-224.

[13] Sharma, A., Kumar, R., and Grover, P. S. (2009).

Reusability assessment for software components,

ACM SIGSOFT Software Engineering Notes, Volume

34 Issue 2, March, pp: 1-6.

[14] Sharma, A., Kumar, R., and Grover, P. S. (2008).

Empirical Evaluation of Complexity for Software

Components, International Journal of Software

Engineering and Knowledge Engineering (IJSEKE),

Vol. 18, Issue 5, pp: 519-530.

[15] Sivanandam, S. N., Sumathi, S., Deepa, S. N. (2007).

Introduction to fuzzy logic using MATLAB, Springer.

New York

[16] Slimane, T., and Djilani, B. A.(2013). Effect of

Different Membership Functions on Fuzzy Power

System Stabilizer for Synchronous Machine

Connected to Infinite Bus. International Journal of

Computer Applications (0975 – 8887) Volume 71–

No.7

[17] Sommerville, I.(2011). Software Engineering,

Pearson, US.

[18] Tobias, M.,Mwangi W., and Michael, K. (2015).

Empirical Evaluation of Complexity Metrics for

Component Based Systems, Journal of Theoretical and

Applied Information Technology. ISSN 1992-8645,

Vol. 73 No 2.

[19] Zadeh, L. A.(2002). From Computing with numbers to

computing with words-from manipulation of

measurements to manipulation of perceptions,

International Journal of Applied Mathematics and

Computer Science, Vol.12, Issue 3, pp: 307-324

https://dx.doi.org/10.24001/ijaems.3.9.9
http://www.ijaems.com/
http://dx.doi.org/10.1155

